
SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn iiiinnnn EEEEsssstttteeeelllllllleeee 1111

R. Gotzhein+, G. v. Bochmann*

AAAAbbbbssssttttrrrraaaacccctttt.... We present a constructive approach for the incremental
specialization of Estelle module definitions. As a formal basis, a general
model of object behaviour and two notions of specialization are chosen.
An abstract semantics of Estelle module definitions is defined in this
general model, which makes the notions of specialization applicable to
Estelle. Several modifications of Estelle module definitions with the
property that the resulting module definition specializes the starting
module definition are introduced, which allows for incremental
specialization. Finally, fusion of Estelle module definitions is introduced
and defined in terms of incremental specialization. The presented
approach is of particular interest in the software maintenance phase,
because it can reduce the total effort of adding or modifying user
requirements in certain situations.

0000 IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn
The software development process is usually modeled as a sequence of
activities that lead from the problem to a correct software solution.
Intermediate steps can include problem analysis, system design, system
implementation, functional validation, performance checks, installation,
and the acceptance by the customer. Once the software is accepted, the
maintenance phase begins. Software maintenance covers the adaptation
to modified requirements, such as new or different user requirements,
changes in underlying system software or hardware, and the exchange
of internal algorithms. The removal of errors that are detected after the
acceptance of the software is also considered as part of the maintenance.
Experience has shown that the costs for software maintenance exceed
the costs for software development significantly. Therefore, it would be
interesting to find systematic approaches that can help reducing
maintenance costs. In the following, we address maintenance in the
course of new or modified user requirements. Consider, for instance, a
telephone company that provides services to a large number of

1 This research was performed during 1991-92 when R. Gotzhein was with
the University of Montreal. The research was supported by a grant from the
Canadian Institute for Telecommunications Research under the NCE
program of the Government of Canada.

+ Department of Computer Science, University of Kaiserslautern, Postfach
3049, D-67653 Kaiserslautern, Germany; email: gotzhein@informatik.uni-
kl.de

* D�partement d'IRO, Universit� de Montr�al, C.P. 6128, Succ. Centre Ville,
Montr�al, Qu�bec, H3C 3J7, Canada; email: bochmann@iro.umontreal.ca

subscribers. The telephone company will certainly be interested in
optimizing these services in order to cut costs. Also, it will be interested
in adding new services and improving existing ones in order to increase
revenues and competitiveness. In a free deregulated market, we can
also have a situation where different companies provide different
portions of a service, and where new companies enter the market by
providing new, better, or cheaper services. In all these cases where the
original service is modified, the resulting service has to be validated to
ensure that it satisfies the new requirements. In addition, the service
has to be validated to ensure that it still satisfies the old requirements
as far as they have not been changed.
Since the original services have been validated before, the question
arises whether it is possible to modify or extend them without
validating the resulting services against the old requirements as far as
they have been left unchanged. If so, this could reduce the total effort of
system maintenance and thus the maintenance costs significantly. In
particular, if the modifications to the system are relatively small, then
such an approach would be most beneficial.

S S'

 I I'

S

 I I'

a) b)

Figure 1: Different approaches to the development of correct software

To make this question a little more precise, consider the situation shown
in Figure 1a. Here, we have a requirement specification S that is
implemented by I. The arrow from I to S means that I correctly
implements S, which has to be validated after the implementation is
completed. When the requirements are to be changed, it is good
engineering practice to modify S first, yielding S', and then to develop I'
that realizes S'. In many cases, I' can be based on I. However, the
validation that I' correctly implements S' has to start from scratch.
Intuitively, if S' is an extension and/or specialization of S, then I' will
also be correct with respect to S, as indicated by the shaded arrow. A
different approach is shown in Figure 1b. Here, the modifications are
applied directly to I in a way that preserves the properties of I. Thus,
by construction I' will be correct with respect to S, as indicated by the
shaded arrow. In this case, it suffices to validate I' against the new or
modified user requirements.
This general approach can be made precise and be applied in different
formal frameworks. For instance, we could use trace logic to specify S
and S', and CSP to describe I and I' ([Hoa85]). In this case, we can use
the relation "sat" to formalize correctness between I and S (), and
logical implication "⊃" to formalize specialization between S' and S ().
Since under these relations, (I' sat S') ∧ (S' ⊃ S) ⊃ (I' sat S) holds, we
have exactly the situation shown in Figure 1a. However, there is no
suitable relation to formalize specialization between I' and I (), as
suggested in Figure 1b. Failure equivalence would certainly be too

strong, because it would leave no room for modifications that are visible
to the user.
In this paper, we will focus on the situation shown in Figure 1b and the
use of the formal description technique Estelle ([ISO89], [BuDe87]) as a
language for the description of I and I'. As a starting point, we consider
single Estelle modules without substructure, where the queues of a
module are not directly associated with the local module state. To
formalize the notion of specialization in Estelle, we apply an abstract
behaviour model with formal notions of specialization ([BoGo93]). This
model is outlined in Section 1. In Section 2, we define an abstract
semantics for Estelle module definitions in terms of the behaviour
model. This semantics is related to the standard semantics in [ISO89].
Thus, the notions of specialization become applicable to Estelle module
definitions. In Section 3, we examine several syntactical modifications of
Estelle module definitions (such as adding, removing, and modifying
transitions) and show that under certain restrictions they always lead to
specialized module definitions (in the previously defined semantical
sense). This means that in many cases, it can now be decided by a
simple inspection of the Estelle module definition whether it is a
specialization of another one. In these cases, it is no longer necessary to
conduct proofs in the framework of the semantical model. In Section 4,
we introduce fusion of Estelle module definitions.
In [Saq91], some initial work on specialization has been reported.
However, the treatment there is informal, and the results differ
significantly from our results.

1111 AAAA ggggeeeennnneeeerrrraaaallll ffffrrrraaaammmmeeeewwwwoooorrrrkkkk ffffoooorrrr ssssppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn
In our formal framework (for details, see [BoGo93]), the behaviour of an
object is defined in terms of external actions that are offered to the
environment. In the general case, the sets of offered actions may
depend on the objectÕs history, which is modeled as the sequence of
previous actions. The basic notions of action, offered actions, trace,
behaviour, and specialization are defined subsequently. More
explanations and examples can be found in [BoGo93].
An action is a triplet f(i;o), where f is an operation name, i is the value of
the input parameter(s) of the operation, and o is the value of the output
parameter(s) returned by the object as result of the operation. This
differs from other models (e.g. [Hen85], [Hoa85]), where actions have no
structure on the model level.
DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....1111:::: Let F be a set of operation names, I be a set of inputs,
and O be a set of outputs. Then Act = F × I × O is the set of actions.
The sequence of actions that have occurred since the object has been
instantiated is called trace (or history). After each trace, an object allows
for a (possibly empty) set of actions, called chosen set of offered actions.
We assume here that objects execute one action at a time. Therefore, the
history of an object can be modeled as a sequence of actions.
Nondeterminism is modeled by allowing, for a given trace, several sets
of offered actions, and, for a given operation and input, several possible
outputs. This leads to the following definition of behaviour in general.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....2222:::: Let B be a set of pairs (t,AAAA), where t is a sequence,
possibly empty (denoted <>), of actions, and AAAA = {A1,...,An} is a set of sets
of actions. B is called a behaviour if it satisfies the following conditions:
a) if (t,AAAA) ∈ B, then AAAA ≠ {};
b) if (t,AAAA) ∈ B and (t,AAAA') ∈ B, then AAAA = AAAA';
c) (<>,AAAA) ∈ B, for some AAAA = {A1,...,An};
d) if (t,AAAA) ∈ B, A ∈ AAAA, and a ∈ A, then (t ^<a>,AAAA') ∈ B, for some AAAA';
e) if (t ^<a>,AAAA') ∈ B, for some AAAA', then there is AAAA and A ∈ AAAA such that

(t,AAAA) ∈ B and a ∈ A.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....3333:::: Let B be a behaviour. Then traces(B) is the set of all t
such that there is (t,AAAA) ∈ B. The elements of traces(B) are called traces of
B. ^ denotes concatenation of traces. The elements of AAAA are called sets of
offered actions after t. A state of B is a pair (t,A), where A ∈ AAAA and (t,AAAA)
∈ B.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....4444:::: Let (t,A) be the current state of B, f be an operation,
and i be an input. We say that B blocks for f(i), if there exists no output
o such that f(i;o) ∈ A. B blocks for f, if for all i, it blocks for f(i). B accepts
f(i), if there exists an output o such that f(i;o) ∈ A. The domain of B in
state (t,A) is the set of f(i) accepted by B in this state. We say that B has
an undetermined output for f(i), if there are at least two actions f(i;o)
and f(i;o') in A with o ≠ o'.
Undetermined outputs are also considered as nondeterminism.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....5555::::
a) A behaviour B is constant iff for all traces of B, the same sets of

actions can be offered.
b) A behaviour B is state deterministic iff for all traces of B, exactly one

set of actions is offered, i.e., iff the state of B is always uniquely
determined by the trace.

c) A behaviour B is deterministic iff it is state deterministic, and the
output is always uniquely determined by operation and input.

A state deterministic behaviour2 may still have undetermined outputs,
thus state determinism is weaker than determinism. A constant, state
deterministic behaviour is uniquely characterized by a single set of
offered actions. State deterministic behaviours are uniquely
characterized by a set of traces, as the following consideration shows: let
B be a state deterministic behaviour, T = traces(B), then B = {(t,{A}) | t ∈
T ∧ A = {a | t^<a> ∈ T}} holds. Constant behaviour is independent of the
object's history, i.e., for all traces, the object can offer the same sets of
actions. Therefore, constant behaviour is uniquely characterized by a set
AAAA of sets of offered actions. Note that constant behaviours can be
deterministic or nondeterministic.
As a starting point for the formal treatment of specialization, we assume
that system specifications are given as properties that constrain the sets

2 In [Sta72], state deterministic behaviours have been called
"observable"; in [Cer92], they have been termed "observably
nondeterministic".

of traces and offered actions. Specialization can be understood as the
selection of options, as the reduction of nondeterminism, or, in general,
as the strengthening of these properties. If the system specification
leaves options, then the system's environment must be prepared to deal
with any of these possibilities. Thus, a specialized system with less
options would not change the resulting behaviour to the worse. We call
this form of specialization reduction.
Also, we may wish to add properties that express the extension of
behaviour, strengthening again the original properties. If the new
properties do not touch the original behaviour, then the environment
can obtain the same services from the resulting system as from the
system before the change was made. It can also obtain the services
expressed by the new properties. We call this form of specialization
extension. Note that extension includes reduction as described before.
On the operational level where a system is modeled as a behaviour, we
will capture these forms of specialization by relations between
behaviours. Reduction and extension are defined in terms of
constrainment, domain coverage, and constrainment on the domain.
Informally, a behaviour B' is constrained by a behaviour B, if for all
traces of B and B', B' can offer only actions that B can offer, too. B' covers
the domain of B, if for all traces of B and B', B' accepts everything that B
accepts. B' is constrained by B on its domain, if for all traces of B and B',
for the domain of B, B' can offer only actions that B can offer, too; B' may
also offer actions f(i;o) that B cannot offer, if f(i) is outside the domain of
B. We now define these relations formally, starting with the special
cases where behaviours are characterized by sets A of offered actions
and sets AAAA of sets of offered actions, respectively.
For constant, state deterministic behaviours, we define the following
relations:

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....6666:::: Let B and B' be constant, state deterministic behaviours
that are characterized by A and A', respectively.
a) A' is constrained by A (written ÒA' <c AÓ) iff A' ⊆ A.
b) A' covers the domain of A (written ÒA' >d AÓ) iff for all actions f(i;o) ∈

A, there is an action f(i;o') ∈ A'. Formally: A' >d A ≡ ∀f,i,o. (f(i;o) ∈ A ⊃
∃o'. f(i;o') ∈ A')

c) A' is constrained by A on its domain (written ÒA' <cd AÓ) iff for all
operations f and inputs i, if A accepts f(i), then for all o, if f(i;o) ∈ A',
then f(i;o) ∈ A. Formally: A' <cd A ≡ ∀f,i. (∃o. f(i;o) ∈ A ⊃ ∀o. (f(i;o) ∈ A'
⊃ f(i;o) ∈ A)).

d) A' reduces A (written ÒA' <r AÓ) iff A' <c A and A' >d A.
e) A' extends A (written ÒA' >e AÓ) iff A' <cd A and A' >d A.

For constant behaviours, we define the following relations:

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....7777:::: Let B and B' be constant behaviours that are
characterized by AAAA and AAAA', respectively. AAAA' R AAAA iff for all A' ∈ AAAA', there
is A ∈ AAAA s.t. A' R A, where R is replaced uniformly by one of the
relations <c, >d, <cd, <r, or >e, which are interpreted as in Definition 1.6.
Formally: AAAA' R AAAA ≡ ∀A' ∈ AAAA'. ∃A ∈ AAAA. A' R A.
For arbitrary behaviours, we define the following relations:

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 1111....8888:::: Let B and B' be behaviours. B' R B iff for all (t,AAAA') ∈ B'
and (t,AAAA) ∈ B, AAAA' R AAAA holds, where R is replaced uniformly by one of the
relations <c, >d, <cd, <r, or >e, which are interpreted as in Definition 1.7.
Formally: B' R B ≡ ∀t,AAAA,AAAA'. ((t,AAAA') ∈ B' ∧ (t,AAAA) ∈ B ⊃ AAAA'ÊR AAAA).
This covers the special cases of deterministic and state deterministic
behaviours.

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....1111::::
a) Let B, B' be behaviours. Then B' <c B implies traces(B') ⊆ traces(B).
b Let B, B' be behaviours. Then B' <c B implies B' <cd B.
c) Let B, B' be behaviours. Then B' <r B implies B' >e B.
d) <c and <r are transitive.
e) >e is transitive for constant behaviours, state deterministic

behaviours, or subsets thereof. It is not transitive in general.
f) Let B, B' be deterministic behaviours. Then B' <r B iff B = B'.

The proofs for this corollary are listed in [BoGo93]. Part f) shows that the
only room left for specializing object behaviour according to <r is the
reduction of nondeterminism. Part c) shows that <r is stronger than >e.
Under >e, it is possible to reduce the number of unspecified receptions
and to extend the functionality by adding actions, which is prohibited by
<r.

2222 SSSSeeeemmmmaaaannnnttttiiiiccccssss ooooffff EEEEsssstttteeeelllllllleeee mmmmoooodddduuuulllleeee iiiinnnnssssttttaaaannnncccceeeessss
In this section, we outline (for details, see [GoBo92]) how an abstract
semantics of Estelle module instances in terms of the behaviour model
from Section 1 can be derived from the standard Estelle semantics. Once
this is done, we can use the notions of reduction, extension,
constrainment, domain coverage, and constrainment on the domain for
Estelle. In particular, we can then investigate which modifications of
Estelle module instances satisfy these relations. There are two main
reasons why we do not use the conventional Estelle semantics from
[ISO89]. Firstly, this semantics is not sufficiently abstract, because it
refers to internal module states. To define formal relations for external
module behaviour, internal states and structures are not relevant.
Secondly, to our knowledge there is no suitable formal relation for
specialization which is defined in terms of the conventional Estelle
semantics.
In order to define the Estelle semantics in terms of the behaviour model
from Section 1, we have to identify actions, traces, offered actions, and
behaviour in the conventional Estelle model. We will focus on a single
module instance without substructure. Also, we assume that transitions
are deterministic. Nondeterminism of transitions can only result from
the use of the constructs forone, exist, all, and from an undetermined
initial state (see [ISO89]). In all other cases, the next state is always
uniquely determined by the transition. Therefore, the assumption of
deterministic transitions holds if the constructs forone, exist, all are not
used in the specification, and the initial state is determined.
A module communicates with its environment by exchanging
interactions at its external interaction points. When a transition fires, a
single interaction can be accepted, and a (possibly empty) sequence of

interactions is sent. Therefore, we can capture the visible effects of a
transition as a pair (i;o), where i is the accepted interaction, and o is the
sequence of sent interactions. Note that the pair (i;o) consists of qualified
interactions, i.e. interactions of the form ip.m(v1,...,vk) that include the
interaction point. This is directly related to actions f(i;o), if we drop the
operation name f, or if we assume that the operation name is the same
for all actions.
Actions are defined as pairs (i;o), where i is a single qualified interaction
(including "null" for spontaneous transitions, i.e., transitions that do not
take an input), and o is a sequence of qualified interactions. Thus, the
Estelle semantics characterizes the set of actions associated with a
module instance. Different from actions as defined in Section 1, we have
no operation, which can be considered as a special case where the
operation is always the same and therefore omitted.
In order to define the traces of a module instance, we first extend the
state of a module instance by a component in that records the
interaction accepted by the previous transition and will be reset before
the next transition fires. To incorporate this into the Estelle semantics,
we slightly modify the auxiliary statement reception (see [GoBo92] for
details). Since reception is only executed for input transitions, in will not
be modified by the interpretation of spontaneous transitions.
Next, the set of potential computations of module instance M is defined
(see [GoBo92] for details). We may think of this set as capturing the
upper bound on the possible behaviour of M. In a given context as
defined by a complete Estelle specification, only a subset of this
behaviour can in general be triggered. There are two main differences to
the notion of computation from [ISO89]. Firstly, the set of potential
computations takes only a single module instance into account,
therefore, potential computations are local. Secondly, M may have an
environment, consisting of module instances that communicate with M.
By defining potential computations, we do not wish to restrict the
possible environments of M, therefore, we have made no assumptions
about the input environment. Note that the definition of potential
computations only takes the transitions of M into account.
With these preparations, we can define the abstract behaviour in terms
of the model from Section 1 for a state deterministic Estelle module
instance without substructure. For each state, the action (i;o) performed
by the previous transition is recorded in the state components in and
out. Different from actions as defined in Section 1, we have no operation,
which can be considered as a special case where the operation is always
the same and therefore omitted. From the set of computations, we
obtain the set of traces by considering only the actions associated with
each state. Since we consider only state deterministic module instances,
the set of traces uniquely characterizes their behaviour (see Section 1).
It should be noted that a state deterministic module instance may
include spontaneous transitions, if they have an output. These
transitions have an externally visible effect, therefore, the
corresponding action will appear in the trace when the transition is
fired. Spontaneous transitions with an empty output are not visible,
therefore, the corresponding action would not appear in the trace. This
would usually result in a behaviour which is not state deterministic.

From the definition of the set of potential computations, it follows that
for any reachable state, a next state only exists if there is an explicitly
specified, fireable transition. Together with the definition of traces(M)
and the fact that for all traces t, the set A of offered actions is defined as
A = {a | t^<a> ∈ traces(M)}, it follows that an action can only be offered if
a corresponding Estelle transition has been explicitly specified. This
models the Estelle convention that unspecified receptions are not
accepted, which is called "blocking by default". A different approach
(which can also be modeled as a behaviour) has been taken in SDL,
where unspecified receptions are accepted and discarded, a convention
called "ignoring by default".

3333 IIIInnnnccccrrrreeeemmmmeeeennnnttttaaaallll ssssppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn ooooffff EEEEsssstttteeeelllllllleeee mmmmoooodddduuuulllleeeessss
In this section, we will consider changes to the definition of an Estelle
module and investigate how the resulting definition is related to the
original definition, based on the relations introduced in Section 1.
Changes to a module definition apply to all module instances created
from this definition. We will consider removal, addition, and
modification of transitions, addition of control states, declarations, and
interaction points, and the fusion of module definitions.
To illustrate the different forms of specialization, we will modify a
customer whose behaviour is given by the Estelle specification in Table
3.1. In this example, the customer who is in the role a subscriber is
connected to a tv station through the Estelle channel "cable". The
definition of "cable" allows the subscriber to switch his tv set on and off,
to switch to another program, and to pay his bill. The tv station may
send commercials, movies, news, sports, and bills which show the
amount due. The customer, as defined by C, only uses a subset of these
features. In control state "idle", he can switch on the tv set. In control
state "watching", he is prepared to switch it off again, or to watch a
commercial. In the latter case, the customer's reaction (= output) is
undetermined. Since he/she does not receive anything worth paying, the
customer blocks for bills (in case the tv station wants to charge for
commercials).

channel cable (tv_station, tv_subscriber);
by tv_station: commercial, movie, news, sports, bill
(amount: integer);
by tv_subscriber: on, off, switch, pay (amount: integer);

module C_type activity;
ip tv: cable (tv_subscriber) individual queue;
end;

body C_body for C_type;
state idle, watching;
initialize to idle begin end;
trans

tr1: from idle to watching begin output tv.on end;
tr2: from watching to same when tv.commercial begin

end;
tr3: from watching to idle when tv.commercial begin

tv.off end;
tr4: from watching to idle begin tv.off end;

end;

Table 3.1: Estelle specification of a customer

Some additional notation will be used in this section. M, M' denote
module definitions specified by module header, module body, and
channel declarations. A module definition M is a structure (states(M),
decl(M), ip(M), itrans(M), trans(M)), where states(M), decl(M), ip(M),
itrans(M), and trans(M) are the set of control states, the set of
declarations, the set of external interaction points, the initialize
transition, and the set of transitions of M, respectively. For a declaration
d and an interaction point ip, id(d) and id(ip) denote the identifier that
is declared; id is extended to sets of declarations and interaction points
in the obvious way. By istate(M), we refer to the initial control state of
M. We assume that all transitions are expanded. A transition named t
has the form3 "t: from st to s't when it provided pt begin bt end". We will
not consider the priority- and delay-clauses. "it" is called "Estelle input"
or "input" for short. Note that an Estelle input it corresponds to a set of
inputs in the underlying model if it has associated parameters. If R is a
relation between behaviours, then we write M' R M instead of Behav(M')
R Behav(M). Transitions with a when-clause are called "input
transitions", transitions without when-clause are called "spontaneous
transitions". t[state]s, t[state']s', t[input]i, and t[provided]p are the
transitions that are obtained from t by replacing st, s't , it, and pt by
state, state', input, and provided, respectively. M[initialize]itrans is the
the module definition that is obtained from M by replacing itrans(M) by
initialize.
If we want to specialize Estelle modules incrementally, it is necessary
that specialization is transitive. Otherwise, subsequent specializations of
module M1 could result in a module Mn that does not specialize M1
although Mi specializes Mi-1 for 1<i≤n. From Corollary 1.1, we know that
<r is transitive in general, but does not leave much room for specializing
behaviour. On the other hand, >e gives more freedom by allowing the
extension of behaviour, but is only transitive for state deterministic
behaviours, constant behaviours, and subsets thereof. To investigate
both notions of specialization, we will therefore focus on state
deterministic behaviour. Informally, an Estelle module definition is state
deterministic, if its initial state is "sufficiently determined", and if all
spontaneous transitions produce an output that uniquely characterizes
the next state.

3 To improve the readability of the following examples, we use a syntax
for transitions that slightly differs from the Estelle syntax in that the
transition name appears in a different position, and without the keyword
"name".

3333....1111 RRRReeeemmmmoooovvvviiiinnnngggg ttttrrrraaaannnnssssiiiittttiiiioooonnnnssss
Removal of transitions will result in a specialization if it reduces the
module definition's nondeterminism and maintains its domain coverage.
Since we focus on state deterministic behaviours, reduction of
nondeterminism means reduction of undetermined outputs.

aaaa)))) iiiinnnnppppuuuutttt ttttrrrraaaannnnssssiiiittttiiiioooonnnnssss
Undetermined outputs may exist if the same Estelle input can be
accepted by different transitions t1,...,tn in the same control state. This is
of course not a sufficient condition, since t1,...,tn could all produce the
same output for the same input. Also, we have to take the provided-
clauses into account: a necessary condition for an undetermined output
is that more than one provided-clause of t1,...,tn can be true for some
input.
Instead of giving sufficient conditions for the existence of undetermined
outputs, we are interested here in sufficient conditions for the reduction
of undetermined outputs while maintaining domain coverage.
Intuitively, we may remove a transition t if there are other transitions
t1,...,tn accepting the same Estelle input in the same control state such
that whenever t can fire, there is some transition ti, 1≤i≤n, which can
fire, too. To capture this idea formally, we define a function
Removet(M,t) that removes the transition t from module M iff the above
conditions are satisfied.
DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....1111:::: Let M be a module definition, t be a transition,
Removal_OK = ∃t'1,...,t'n ∈ trans(M) - {t}. (∀j. (1≤j≤n ⊃ st'j = st ∧ it'j = it) ∧
∀fv. (pt ⊃ ∨1≤j≤n pt'j)), where "fv" is the list of free variables in pt and
pt'j .

Removet(M,t) =Df iiiiffff Removal_OK
 tttthhhheeeennnn (states(M), decl(M), ip(M), itrans(M), trans(M)

- {t}) eeeellllsssseeee M

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....1111:::: Removet(M,t) <r M

EEEExxxxaaaammmmpppplllleeee 3333....1111::::
a) Let C1 =Df Removet(C,tr3). C1 <s C, because the number of

undetermined outputs in control state "watching" on input
"tv.commercial" is reduced by this transformation: C1 no longer
switches off the television when a commercial is received.

b) Let C1' =Df Removet(C,tr1). Since in control state "idle", there is no
undetermined output, the conditions for the removal of tr1 are not
satisfied. Therefore, C1' = C. Nevertheless, C1' <r C holds.

The function Removet can easily be generalized to define the removal of
a list of transitions:

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....2222:::: Let M be a module definition, T be a list of transitions.
RemoveT(M,T) =Df iiiiffff Â empty(T) tttthhhheeeennnn RemoveT (Removet
(M,head(T)), tail(T)) eeeellllsssseeee M

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....2222:::: RemoveT(M,T) <r M

PPPPrrrrooooooooffff:::: Follows from Proposition 3.1 and the transitivity of <r.

bbbb)))) ssssppppoooonnnnttttaaaannnneeeeoooouuuussss ttttrrrraaaannnnssssiiiittttiiiioooonnnnssss
Undetermined outputs may also exist if there are several different
spontaneous transitions t1,...,tn which can fire in the same control state.
Recall that a spontaneous transition has no when-clause, therefore, the
input is empty. We consider the empty input as a special input that is
always available. Since we examine state deterministic behaviours here,
we only allow spontaneous transitions that produce a visible, i.e., non-
empty output. Thus, we can treat spontaneous transitions in the same
way as input transitions.

3333....2222 AAAAddddddddiiiinnnngggg ttttrrrraaaannnnssssiiiittttiiiioooonnnnssss
If transitions are added to a module definition, domain coverage is
maintained. But the constrainment condition will not be satisfied,
because the addition of transitions will extend the set of traces or
increase the nondeterminism. Therefore, the addition of transitions
cannot lead to a specialization in the sense of <r. Under suitable
restrictions, however, it can specialize object behaviour according to >e.
According to <cd, we may add actions to any set of offered actions as
long as this does not make outputs of already offered actions more
undetermined. This condition is satisfied if we add actions extending the
domain in a given state. With respect to an Estelle module, this means
that we may safely add a transition, if it accepts an input that cannot be
accepted by existing transitions in the same control state4.
At this point, it is important to see that a single Estelle input is a set of
inputs of our underlying model, if it has associated parameter values.
Also, the control state alone does not always determine whether a given
input can be accepted. Further constraints taking the parameter values
and the module state into account can be specified in the provided-
clause. Thus, the set of inputs that can be accepted by a transition can
be reduced. If this is the case, we may complement such a transition by
adding another transition that accepts the same Estelle input in the
same control state, but different parameter values or in different
module states. An appropriate restriction can be stated in terms of the
provided-clauses. To capture this formally, we define the function Addt.
We assume that the arguments of Addt (and of all functions defined in
the following) are syntactically correct, and that t is chosen such that its
addition to the module instance M will result in a syntactically correct
module as defined by Addt.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....3333:::: Let M be a module definition, t be a transition,
Addition_OK = ∀t' ∈ trans(M). (st' =st ∧ it' = it ⊃ ∀fv. Â(pt' ∧ pt)), where
"fv" is the list of free variables in pt' and pt.

4 Addition of transitions does not satisfy <cd if we use the "ignoring by
default" assumption, as it is, for instance, done in SDL.

Addt(M,t) =Df iiiiffff Addition_OK
 tttthhhheeeennnn (states(M), decl(M), ip(M), itrans(M), trans(M) ∪

{t}) eeeellllsssseeee M

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....3333:::: Addt(M,t) >e M

EEEExxxxaaaammmmpppplllleeee 3333....3333:::: Let tr5, tr6, tr7, and tr8 be the following transitions:
tr5: from watching to same when tv.movie begin end;
tr6: from watching to same when tv.news begin end;
tr7: from idle to same when tv.bill provided amount ≤ 100 begin end;
tr8: from idle to same when tv.bill begin output tv.pay(amount) end;

a) Let C3 =Df Addt(C1,tr5). tr5 can be added to trans(C1), because the
input "tv.movie" is not in the domain of C1 in control state
"watching". Apart from commercials, C3 is eager to watch movies. It
still refuses to accept anything else, in particular bills.

b) Let C3' =Df Addt (Addt (Addt (Addt (C2,tr5),tr6),tr7),tr8). As a result,
the transitions tr5, tr6, and tr7 will be added to trans(C1). C3' accepts
bills with an amount up to 100, but decides not to pay them. The tv
station might decide to stop sending movies, but continue to send
commercials over the cable. tr8 will not be added, because there
exist values for "amount" such that ptr7 and ptr8 are both satisfied.
Thus, addition of tr8 would increase the nondeterminism.

The function Addt can easily be generalized to the addition of a list of
transitions (compare Definition 3.2). But since we have assumed that the
transitions of module definitions are deterministic (see also Section 2),
undetermined outputs cannot be introduced in this way without
violating <cd. However, it is possible to introduce undetermined outputs
if several transitions are added in one step. This leads us to the function
AddT, which generalizes Addt.
DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....4444:::: Let M be a module definition, Additions_OK = ∀t ∈T.
Addition_OK.

AddT(M,T) =Df iiiiffff Additions_OK
tttthhhheeeennnn (states(M), decl(M), ip(M), itrans(M), trans(M) ∪

T) eeeellllsssseeee M

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....4444:::: AddT(M,T) >e M

EEEExxxxaaaammmmpppplllleeee 3333....4444:::: Let C6 =Df AddT (C2,{tr5,tr6,tr7,tr8}). As a result, the
transitions tr5, tr6, tr7, and tr8 will be added to trans(C2). Note that this
differs from C5 as defined in Example 3.3. Nevertheless, C6 >e C2 holds.
C6 will pay bills that show an amount greater than 100. For amounts up
to 100, it is undetermined whether C6 will pay.

3333....3333 MMMMooooddddiiiiffffyyyyiiiinnnngggg ttttrrrraaaannnnssssiiiittttiiiioooonnnnssss
In a few cases, a module definition can be specialized by modifying its
transitions. This concerns the modification of the from-, to-, when-, and
provided-clauses of transitions. We do not consider the modification of
transition blocks here. Such modifications would usually require an
extensive analysis of the module behaviour and therefore cannot be
captured by relatively simple rules.

3333....3333....1111 MMMMooooddddiiiiffffyyyyiiiinnnngggg tttthhhheeee ffffrrrroooommmm----,,,, ttttoooo----,,,, aaaannnndddd wwwwhhhheeeennnn----ccccllllaaaauuuusssseeeessss

Modification of the from-clause of a transition t in fact means that some
inputs that have been accepted in state st will now be accepted in a

different state. This is a specialization if the removal of t is a
specialization, and the subsequent addition of the transition t' that
differs from t in the from-clause only is a specialization, too. Therefore,
we can define the modification of a from-clause in terms of removal and
addition.
Modification of a to-clause of a transition means that some traces will
lead to different states. It follows that the module instance will offer a
different set of actions after each such trace. This is a specialization only
if for each of these traces, the new set of offered actions specializes the
original set of offered actions. In general, it has to be investigated on a
case by case basis whether this condition is satisfied. Also, we can again
take the previous approach and define this kind of modification in terms
of addition and removal of a transition, which covers some possible
cases.
Modification of the when-clause of a transition means that different
inputs will be accepted by that transition afterwards. This is only a
specialization if the domain coverage is not violated, and the
undeterminism does not increase as a result. These conditions are
checked by the operations Removet. and Addt. Therefore, we can again
define this kind of modification in terms of adding and removing a
transition.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....5555:::: Let M be a module definition, t be a transition, s ∈
states(M), s' ∈ states(M), and i be an input.
a) Modifys(M,t,s) =Df iiiiffff Removal_OK tttthhhheeeennnn Addt (Removet (M,t),t[s]s)

eeeellllsssseeee M
b) Modifys'(M,t,s') =Df Addt (Removet (M,t),t[s']s')
c) Modifyi(M,t,i) =Df iiiiffff Removal_OK tttthhhheeeennnn Addt (Removet (M,t),t[i]i) eeeellllsssseeee

M

If t cannot be removed from M, then t[s']s' cannot be added to M.
Therefore, in an additional condition as in a) and c) is not necessary in
b).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....5555::::
a) Modifys(M,t,s) >e M
b) Modifys'(M,t,s') >e M
c) Modifyi(M,t,i) >e M

EEEExxxxaaaammmmpppplllleeee 3333....5555::::
a) Let C5 =Df Modifys(C3',tr7,watching). Since the domain covered by tr7

is also covered by tr8, tr7 can be removed. Also, tr7[watching]s can
be added.

b) Let C6 =Df Modifys'(C5,tr7[watching]s,watching). Since removal of
tr7[watching]s would violate domain coverage, C6 = C5.

c) Let C7 =Df Modifyi(C3',tr7,tv.sports). Since the domain covered by tr7
is also covered by tr8, tr7 can be removed. Also, tr7[tv.sports]i can
be added after removal of tr7.

3333....3333....2222 MMMMooooddddiiiiffffyyyyiiiinnnngggg tttthhhheeee pppprrrroooovvvviiiiddddeeeedddd----ccccllllaaaauuuusssseeee

Modification of a provided-clause p can have the effect that the
transition accepts different inputs in different module states with the
same control state. We will consider those cases where the different
inputs and module states are characterized by a provided-clause p' that
is either stronger or weaker than p. In general, p and p' may be
unrelated.

aaaa)))) ssssttttrrrreeeennnnggggtttthhhheeeennnniiiinnnngggg tttthhhheeee pppprrrroooovvvviiiiddddeeeedddd----ccccllllaaaauuuusssseeee
If the provided-clause is strengthened, this can concern both the
constraints on the parameter values and the module state. Thus, the
modified transition will accept less inputs in less module states. This is a
specialization only if the domain coverage is maintained, i.e., if there are
other transitions that make up for the reduced domain of the modified
transition in all affected module states. Stated otherwise, we have a
specialization if the modification of the provided-clause reduces
undeterminism. To capture this idea formally, we define a function
Modifyp(M,t,p) that changes the provided-clause of transition t of
module M into p iff the above conditions are satisfied.
DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....6666:::: Let M be a module instance, t be a transition, p be a
provided-clause, Strengthening_OK = ∀fv. (p ⊃ pt) ∧ ∃t'1,...,t'n ∈ trans(M)-
{t}∪{t[p]p}. (∀j. (1≤j≤n ⊃ st'j = st ∧ it'j = it) ∧ ∀fv. (pt ⊃ ∨1≤j≤n pt'j)).

Modifyp(M,t,p) =Df iiiiffff Strengthening_OK
 tttthhhheeeennnn (states(M), decl(M), ip(M), itrans(M),

trans(M)-{t}∪{t[p]p})
 eeeellllsssseeee M

Strengthening the provided-clause of a transition is very similar to the
removal of a transition (compare Removal_OK and Strengthening_OK). In
fact, we could comprehend t as two transitions t' and t" which are
derived from t by replacing pt by pt' = p and pt" = pt ∧ Âp, respectively.
Strengthening the provided-clause of t is then equivalent to the removal
of t".
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....6666:::: Modifyp(M,t,p) <r M

EEEExxxxaaaammmmpppplllleeee 3333....6666:::: Let C8 =Df Modifyp(C3',tr8,amount ≥ 50). If a provided-
clause is not specified for a transition, then according to the Estelle
semantics, it is equivalent to "true". Therefore, we have ptr8 = true,
which is implied by "amount ≥ 50" for all possible values of "amount".
Also, "∀amount. (amount ≤ 100 ∨ amount ≥ 50)" is equivalent to "true",
which is implied by ptr8. Therefore, the modification of the provided-
clause of tr8 will lead to a specialization of C3'.

bbbb)))) wwwweeeeaaaakkkkeeeennnniiiinnnngggg tttthhhheeee pppprrrroooovvvviiiiddddeeeedddd----ccccllllaaaauuuusssseeee
If the provided-clause is weakened, the modified transition will accept
more inputs in more module states. This is a specialization in the sense
of >e only if the undeterminism does not increase. Domain coverage is
always maintained by this modification, since all inputs that were
accepted before will be accepted afterwards. To capture this idea
formally, we define a function Modify'p(M,t,p) that changes the

provided-clause of transition t of module M into p iff the above
conditions are satisfied.
DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....7777:::: Let M be a module instance, t be a transition, p be a
provided-clause, Weakening_OK = ∀fv. (pt ⊃ p) ∧ ∀t' ∈ trans(M)-{t}. (st' =
st ∧ it' = it ⊃ ∀fv. Â(pt' ∧ p)).

Modify'p(M,t,p) =Df iiiiffff Weakening_OK
 tttthhhheeeennnn (states(M), decl(M), ip(M), itrans(M),

trans(M)-{t}∪{t[p]p})
 eeeellllsssseeee M

Weakening the provided-clause of a transition is very similar to the
addition of a transition (compare Adding_OK and Weakening_OK). In
fact, weakening of the provided-clause of t is equivalent to the addition
of a transition t' that is derived from t by replacing pt by p∧ÂpÊt, i.e.,
Modify'p(M,t,p) = Addt(M,t[p∧ÂpÊt]p).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....7777:::: Modify'p(M,t,p) >e M

EEEExxxxaaaammmmpppplllleeee 3333....7777:::: Let C9 =Df Modify'p(C8,tr7,amount ≤ 200). The constraint
∀amount. (amount ≤ 100 ⊃ amount ≤ 200) is satisfied. But since there
are values for which Â(amount ≥ 50 ∧ amount ≤ 200) does not hold, the
modification cannot be applied. Therefore, C9 = C8.

3333....4444 AAAAddddddddiiiinnnngggg ccccoooonnnnttttrrrroooollll ssssttttaaaatttteeeessss,,,, ddddeeeeccccllllaaaarrrraaaattttiiiioooonnnnssss,,,, aaaannnndddd eeeexxxxtttteeeerrrrnnnnaaaallll
iiiinnnntttteeeerrrraaaaccccttttiiiioooonnnn ppppooooiiiinnnnttttssss
Control states can be added, since they do not affect the module's
behaviour. Without the existence of suitable transitions, the new control
states will be unreachable. Thus the actual extension of the behaviour is
only prepared at this point, but will be effected when transition are
added later on. For the addition of control states, we introduce the
function Adds.
Declarations can be added, if they do not interfere with existing
declarations, because they do not affect the module instance's
behaviour. Note that adding the declaration of a variable which has the
same identifier than an already declared variable, but a different type,
would result in a syntactically incorrect module definition. Again, the
addition of declarations prepares the extension of behaviour, which can
be achieved by the addition of transitions.
External interaction points can be added to a module description,
because this does not affect the behaviour of the module instance. Since
the addition of an external interaction point can be considered as the
addition of a declaration, the previous restriction applies here, too. As
before, this prepares the extension of behaviour, transitions added
subsequently may accept inputs through the new interaction points.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 3333....8888:::: Let M be a module definition, s be a state, d be a
declaration, ip be an external interaction point, Additiond_OK = id(d) ∉
id(decl(M)), Additionip_OK = id(ip) ∉ id(ip(M)).
a) Adds(M,s) =Df (states(M)∪{s}, decl(M), ip(M), itrans(M),

trans(M))
b) Addd(M,d) =Df iiiiffff Additiond_OK

 tttthhhheeeennnn (states(M), decl(M)∪{d}, ip(M), itrans(M),
trans(M)) eeeellllsssseeee M

c) Addip(M,ip) =Df iiiiffff Additionip_OK
 tttthhhheeeennnn (states(M), decl(M), ip(M)∪{ip}, itrans(M),

trans(M)) eeeellllsssseeee M

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....8888::::
a) Adds(M,s) <r M
b) Addd(M,d) <r M
c) Addip(M,ip) <r M

Adds, Addd, and Addip can be generalized to functions AddS, AddD, and
AddIP that define the addition of a set of states, a set of declarations,
and a set of external interaction points in the obvious ways.

4444 FFFFuuuussssiiiioooonnnn ooooffff mmmmoooodddduuuulllleeee ddddeeeeffffiiiinnnniiiittttiiiioooonnnnssss
We have now reached the point where we can define the fusion of
module definitions in terms of incremental specialization. We define
fusion for a pair of module definitions. The result of the fusion
specializes each single module definition, if the conditions for the fusion
are satisfied. These conditions concern the applicability of the functions
AddD, AddIP, or form part of the definition of AddT.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 4444....1111:::: Let M, M' be module definitions, Fusion_OK = istate(M)
= istate(M') ∧ id(decl(M)) ∩ id(decl(M')) = {} ∧ id(ip(M)) ∩ id(ip(M')) = {}.

Fuse(M,M') =Df iiiiffff Fusion_OK
tttthhhheeeennnn AddT (Replacei (AddIP (AddD (AddS

(M,states(M')),
 decl(M')),ip(M')), fuse(itrans(M),

itrans(M'))),trans(M'))
eeeellllsssseeee M

Informally, fuse(itrans(M),itrans(M')) returns a transition that is
obtained by taking the to-clause of itrans(M), and by sequentially
composing the transition blocks of itrans(M) and itrans(M'). If Fusion_OK
is satisfied, then the to-clauses of itrans(M) and itrans(M') are identical,
and the variable identifiers are disjoint. Therefore,
fuse(itrans(M),itrans(M')) and fuse(itrans(M'), itrans(M)) are
semantically equivalent, because both transitions lead to the same initial
state. The function Replacei replaces the initialize transition of the
module definition by the transition given as the second argument. Also,
if Fusion_OK is satisfied, then states(M) ∩ states(M') ≠ {} holds.

channel home_delivery (customer,restaurant);
by customer: order, pay;
by restaurant: ring, salad, cheese, chicken;

module C'_type activity;
ip door (customer) individual queue;
end;

body C'_body for C'_type;
state idle, hungry, eating;
initialize to idle begin end;
trans

tr1': from idle to same when door.ring begin end;
tr2': from idle to hungry when door.ring begin output

door.order end;
tr3': from hungry to eating when door.salad begin end;
tr4': from hungry to eating when door.cheese begin

end;
tr5': from eating to idle begin output door.pay end;

end;

Table 4.1: Estelle specification of another customer

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....1111::::
a) Fuse(M,M') >e M
b) trans(Fuse(M,M')) = trans(M) ∪ trans(M') implies

Behav(Fuse(M,M')) = Behav(Fuse(M',M)) and
Fuse(M,M') = Fuse(M',M)[fuse(itrans(M),

itrans(M'))]itrans

EEEExxxxaaaammmmpppplllleeee 4444....1111:::: Let C' be the customer specified in Table 4.1. C' is
connected to a restaurant through an Estelle channel "home_delivery".
From time to time, the home delivery service rings at the door. The
customer may then simply ignore the ringing, or he may order some
food and suddenly start feeling hungry. The restaurant then supplies
him with food and expects to get paid. From three possible dishes, the
customer only accepts salad and cheese. Because he is vegetarian, he
will block for chicken and starve. After he has finished eating, the
customer will pay for his dish. We can now fuse C8 and C' using the
function Fuse. The fusion will result in the Estelle module C" shown in
Table 4.2. In this particular case, Fuse(C8,C') = Fuse(C',C8). Therefore, C"
>e C8 and C" >e C'. Note that C8 and C' have one (initial) control state in
common, but are otherwise disjoint behaviours.

5555 CCCCoooonnnncccclllluuuussssiiiioooonnnnssss
We have presented a constructive approach for the incremental
specialization of Estelle module definitions. The approach is of particular
interest in the software maintenance phase, because it can reduce the

total effort of adding or modifying user requirements in some situations.
As a starting point, we have assumed that system specifications are
given as properties that constrain the set of traces and offered actions.
These properties can be interpreted as behaviours, which have provided
the formal basis for reduction and extension, two different notions of
specialization. Since these notions take only the traces and - for any
given trace - the sets of possible next actions into account, the room for
specialization in terms of properties is limited. It would be interesting to
take other kinds of properties into account. For instance, if new services
are added to an existing one, it should always be possible to return to
the original service after accessing new services. This case is not covered
by our notions of specialization. With respect to Estelle, it would mean
that it is always possible to return to the initial state.
Our general approach of specializing object behaviour on the operational
level, outlined in the Introduction, can help to reduce software
maintenance costs due to new or modified user requirements. Apart
from Estelle, it can be considered in other formalisms as well, for
instance, LOTOS, CSP, and SDL. In SDL, offered actions not only result
from explicitly defined transitions, but also from implicit transitions due
to the "ignoring by default" convention. This means that if we
remove/add an explicit transition, an implicit transition will be
automatically added/removed. This makes the treatment of
specialization in SDL using the above notions of reduction and extension
more difficult and limited. An option would be to consider weaker
notions of specialization, for instance, constrainment, constrainment on
the domain, or domain coverage.

channel cable (tv_station, tv_subscriber);
by tv_station: commercial, movie, news, sports, bill
(amount: integer);
by tv_subscriber: on, off, switch, pay (amount: integer);

channel home_delivery (customer,restaurant);
by customer: order, pay;
by restaurant: ring, salad, cheese, chicken;

module C"_type activity;
ip tv: cable (tv_subscriber) individual queue;
ip door (customer) individual queue;
end;

body C"_body for C"_type;
state idle, watching, hungry, eating;
initialize to idle begin end;
trans

tr1: from idle to watching begin output tv.on end;
tr2: from watching to same when tv.commercial begin

end;
tr3: from watching to idle when tv.commercial begin

tv.off end;

tr4: from watching to idle begin tv.off end;
tr5: from watching to same when tv.movie begin end;
tr6: from watching to same when tv.news begin end;
tr7: from idle to same when tv.bill provided amount ≤

100 begin end;
tr8: from idle to same when tv.bill provided amount ≥

50
begin output tv.pay(amount) end;

tr1': from idle to same when door.ring begin end;
tr2': from idle to hungry when door.ring begin output

door.order end;
tr3': from hungry to eating when door.salad begin end;
tr4': from hungry to eating when door.cheese begin

end;
tr5': from eating to idle begin output door.pay end;

end;

Table 4.2: Estelle specification of a composed customer

AAAAcccckkkknnnnoooowwwwlllleeeeddddggggeeeemmmmeeeennnntttt.... The authors gratefully acknowledge several
constructive comments from the referees.

RRRReeeeffffeeeerrrreeeennnncccceeeessss
[BoGo93] Bochmann, G.v., Gotzhein, R.: Specialization of Object Behaviors
and Requirement Specifications, Publication No. 853, Departement d'IRO,
Universite de Montreal, January 1993, 25p.
[BuDe87] Budkowski, S., Dembinski, P.: An Introduction to Estelle: A
Specification Language for Distributed Systems, Computer Networks and
ISDN Systems, Vol. 14, 1987
[Cer92] Cerny, E.: Verification of I/O Trace Set Inclusion for a Class of
Non-deterministic Finite State Machines, ICCD'92 Conference, Cambridge,
Mass., October 1992
[GoBo92] Gotzhein, R., Bochmann, G.v.: Specialization in Estelle,
Publication #835, D�partement d'IRO, Universit� de Montr�al, Montr�al,
Canada, September 1992, 23p.
[Hoa85] Hoare, C. A. R.: Communicating Sequential Processes, Englewood
Cliffs, Prentice Hall, 1985
[ISO89] Estelle - A Formal Description Technique Based on an Extended
State Transition Model, International Standardization Organization, IS
9074, 1989
[Saq91] Saqui-Sannes, P. d.: Comparison of Several Specification
Languages with Regards to Stepwise Refinement and Specialization,
Working Draft, CITR Project on Development of Prototype Specifications
and Implementations, December 1991

[Sta72] Starke, P.H.: Abstract Automata, North-Holland, Amsterdam,
1972

